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Abstract: The Monte Carlo (MC) method is one of the most widely used numerical tools to
model the light interaction with tissue. However, due to the low photon collection efficiency and
the need to simulate the entire emission spectrum, it is computationally expensive to simulate
the full-spectrum backscattered diffuse reflectance (F-BDR). Here, we propose an acceleration
scheme based on importance sampling (IS). We derive the biasing sampling function tailored
for simulating BDR based on the two-term scattering phase function (TT). The parameters
of the TT function at different wavelengths are directly obtained by fitting the Mie scattering
phase function. Subsequently, we incorporate the TT function and its corresponding biased
function into the redefined IS process and realize the accelerated simulation of F-BDR. Phantom
simulations based on the Fourier-domain optical coherence tomography (FD-OCT) are conducted
to demonstrate the efficiency of the proposed method. Compared to the original simulator
without IS, our proposed method achieves a 373× acceleration in simulating the F-BDR of the
multi-layer phantom with a relative mean square error (rMSE) of less than 2%. Besides, by
parallelly computing A-lines, our method enables the simulation of an entire B-scan in less than
0.4 hours. To our best knowledge, it is the first time that a volumetric OCT image of a complex
phantom is simulated. We believe that the proposed acceleration method can be readily applied to
fast simulations of various F-BDR-dependent applications. The source codes of this manuscript
are also publicly available online.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

An accurate analysis of the wavelength-dependent backscattered light from biological tissues is
highly desired, because it can potentially provide non-invasive monitoring of tissue structure
[1], microscopic characteristics [2], and spectroscopic information [3]. A precise analytical or
numerical modeling of full-spectrum backscattered diffuse reflectance (F-BDR) is crucial in
elucidating the relationship between tissue parameters and imaging results, which could help us
gain a better understanding of various phenomena including speckle [4,5], dispersion [6,7], and
phase noise [8,9].

Monte Carlo (MC) method is a widely used technique for numerically simulating light-tissue
interactions in biological tissues [10–12]. Combined with the accurate Mie scattering theory
[13], the MC method has been applied to a variety of biophotonics studies, including polarized
light transport [14,15], diffuse reflectance spectroscopy [16,17], fluorescence [18,19], and optical
coherence tomography (OCT) [20,21]. Despite its effectiveness in simulating photon transport,
the relatively low photon collection efficiency of backscattered photons makes it computationally
expensive in the simulation of F-BDR. This issue is further exacerbated by the wavelength-
dependent nature of light-tissue interactions, as simulating each wavelength independently results
in additional computational costs [21].
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Various techniques are proposed to address this issue [22–26]. Among them, an variance
reduction technique called importance sampling (IS) [27] can be deployed with commonly used
CPUs. It has been widely applied in diverse fields, including confocal microscopy [22], OCT
[24,25], and optical wireless communication [28]. The essence of IS for simulating BDR lies in
constructing a biased scattering function based on the normal scattering phase function (SPF)
that is dominated by forward scattering. Subsequently, each biased event is weighted by the
likelihood ratio of observing it in an unbiased simulation [22,24,25,28].

Unfortunately, the IS method cannot be directly applied to the simulations which uses Mie
SPF in non-closed form. It is because the IS requires an analytic SPF for deriving the biased
scattering function. Therefore, a closed-form SPF approximating the Mie function is needed.
The classical approximation utilized in most IS-based methods is the Henyey-Greenstein (HG)
SPF [29,30]. However, it has been demonstrated to be inaccurate for simulating the backscattered
events [31,32]. Additionally, it does not incorporate wavelength dependency, which makes it
unsuitable for simulating the F-BDR.

To address the above issues, in this manuscript we propose a novel acceleration scheme for
the MC simulation of F-BDR based on IS. A two-term five-parameter SPF (TT) proposed by
Jacques and McCormick [32] is utilized to approximate the Mie SPF. Specifically, we first derive
the TT-biased function for the TT-based IS process of MC simulation to bias photons towards the
detector. Then, by fitting the TT function and the wavelength-dependent Mie function, we obtain
the wavelength-dependent parameters of TT and its biased form. Finally, the aforementioned
functions are incorporated into the IS-based scattering event to achieve the accelerated simulation
of F-BDR. The method is validated on MC simulations of polystyrene microsphere phantoms
using Fourier-domain OCT (FD-OCT). Normalized F-BDR for the multi-layer phantom shows
that the proposed IS-accelerated method can increase the speed of the original simulator by
373 times with the relative mean square error (rMSE) less than 2%. As a result, the reduced
computational cost allows us to complete the B-mode simulation within 0.4 hours and makes
it possible to present the FD-OCT volumetric simulation result of a complex phantom. To our
best knowledge, this is the first time to achieve a fast simulation of F-BDR via MC method.
The proposed IS-based acceleration scheme could act as a useful tool for studies of light-tissue
interactions. The source codes are now publicly available online at [33].

2. Theory

2.1. Two-term scattering phase function

The TT function introduced by Jacques and McCormick [32] is a linear combination of two
one-term SPFs derived from the generating function for Gegenbauer polynomials, which is also
known as the GK function [34]. This one-term SPF can be expressed as follows,

p(θ, g,α) = K(g,α)
(︂
1 + g2 − 2g cos θ

)︂−(α+1)
, |g| ≤ 1,α>−

1
2

, θ ∈ [0, π] (1)

where θ is the scattering angle, g controls the level of scattering bias, and the parameter α
enhances the effect of g. The normalization coefficient K(g,α) can be written as,

K(g,α) = π−1αg
(︂
1 − g2

)︂2α [︁
(1 + g)2α − (1 − g)2α

]︁−1 , (2)

which is designed for satisfying the normalization condition of having an integral over 4π
steradians equal to unity, which is represented as,∫ 2π

0

{︃∫ π

0
p(θ) sin θdθ

}︃
dϕ = 1, (3)

where ϕ is the azimuthal angle, which is considered to be uniformly distributed at [0, 2π] in MC
simulation [35]. By linearly combining two GK SPFs with opposite scattering biased directions
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[32], the five-parameter TT could be expressed as,

pTT(θ; U) = pTT(θ, gf ,αf , gb,αb, C) = Cpf (θ, gf ,αf ) + (1 − C)pb(π − θ, gb,αb) (4)

where U = {gf , gb,αf ,αf , C} is a coefficient vector of the parameters, pf and pb are GK functions
determining the forward scattering and backward scattering profiles, respectively. The constraint
of the weighting coefficient C is that 0 ≤ C ≤ 1. The range of gf and gb can both be specified as
[0, 1] to allow independent control of two opposite scattering directions. When the parameter αf
is set to 0.5 and C is set to 1, the TT function is reduced to the HG function [29], which is given
by

pHG(θ) =
1

4π
1 − g2(︁

1 + g2 − 2g cos θ
)︁3/2 , θ ∈ [0, π]. (5)

2.2. Biased two-term SPF for simulating backscattered diffuse reflectance

In [25], Lima et al. introduced an importance sampling technique for simulating BDR. This
method involves manually biasing the scattered photons towards the detector and subsequently
sampling an angle θB by a biased SPF. The θB is defined as the angle between the new propagation
direction and the detector direction, with a limit of cos θB ∈ [0, 1]. However, this method is
developed on the basis of HG function and is inherently not suitable for simulating F-BDR.

Inspired by this approach, we derive the biased form of the TT function, where we also limit
the sampled biased angle to less than π/2. This ensures that after the biased scattering, the
photon will not keep moving away from the detector, which improves the detection efficiency.
The original cosine of the scattering angle in a GK function is described as [32],

cos θ =
1 + g2

2g
−

1
2g

[︃
ξ

(1 − g)2α
+

1 − ξ

(1 + g)2α

]︃−1/α
, cos θ ∈ [−1, 1], (6)

where ξ is a uniformly distributed random number in range of [0, 1]. To restrict cos θB to the
range of [0, 1], we modify Eq. (6) and obtain the cosine of the biased scattering angle based on
the GK function. The modified equation is given by

cos θB =
1 + g2

2g
−

1
2g

[︃
ξ

(1 − g)2α
+

1 − ξ

(1 + g2)
α

]︃−1/α
, cos θB ∈ [0, 1]. (7)

where the denominator of the second item inside the square bracket is revised. Therefore, by
inversely integrating Eq. (7), the biased SPF based on the GK function can be calculated as,

pB(θB, gB,αB) = KB(gB,αB)
(︂
1 + g2

B − 2gB cos θB
)︂−(αB+1)

, |gB | ≤ 1,αB>−
1
2

, θB ∈

[︂
0,
π

2

]︂
, (8)

with
KB(gB,αB) = π

−1αBgB(1 − gB)
2αB

(︂
1 + g2

B

)︂αB [︂(︂
1 + g2

B

)︂αB
− (1 − gB)

2αB
]︂−1

. (9)

It could be verified that this function satisfies the normalization requirement presented in
Eq. (3), where the upper limit of the integral is modified to π/2. It is worth noting that
when αB = 1/2, Eq. (8) reduces to Eq. (2) in [25]. Consequently, we extend Eq. (8) to two
directions with the procedure discribed in Eq. (4), thereby deriving the TT-biased SPF (TT-B),
pTT-B(θB; UB) = pTT-B(θB, gB,f ,αB,f , gB,b,αB,b, CB).
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2.3. Calculation of wavelength-dependent parameters in TT

Since the TT function does not inherently incorporate the wavelength dependency, we resort
to Mie SPF which accurately models the wavelength-dependent scattering [13,36] as we can
theoretically model biological tissues as a collection of spherical particles sparsely distributed
in a background medium. The Mie SPF is designed to factor in particle parameters and the
wavelength of the electromagnetic wave, which can be expressed as,

pMie(θ; λ) =
1

πQsca(λ; x)
|S1(x, θ)|2 + |S2(x, θ)|2

2x2 , (10)

where the size parameter x is defined as x = 2πnm(r/λ), where nm is the refractive index (RI) of
the medium, r is the radius of the spherical particles, and λ is the wavelength of photons. The
components of the amplitude scattering matrix are represented by S1(x, θ) and S2(x, θ), while
Qsca(λ; x) denotes the scattering efficiency as a function of both the incident wavelength and the
particle parameters.

Hence, it is plausible to fit the TT function of unknown parameters and the Mie function
at distinct wavelengths, thereby yielding the wavelength-dependent TT functions. These TT
functions can be used to derive the corresponding TT-B function for accelerated simulations
while ensuring the wavelength dependency of the simulated F-BDR.

3. Algorithm

In this section, we introduce a novel IS-based acceleration algorithm for the MC simulation
of F-BDR using the TT function and its biased form TT-B function. The proposed algorithm
consists of two steps, as illustrated in Fig. 1. In the first step, we use the five-parameter TT
functions to fit Mie functions at distinct wavelengths, thus preserving the wavelength-dependent
nature of scattering (see Fig. 1(a)). In the second step, we incorporate the TT and TT-B functions
into an IS method, resulting in a biased sampling of backscattering angles, as shown in Fig. 1(b).

3.1. Fitting the five-parameter TT function to the Mie function by nonlinear least square
method

The nonlinear least square method (NLSM) [37] is utilized to fit the TT function and the
Mie function by optimizing the parameters in the TT function, as demonstrated in Fig. 1(a).
Specifically, the parameters of the TT function at wavelength λ is Uλ = {gf ,λ, gb,λ,αf ,λ,αb,λ, Cλ},
and the optimization process for each wavelength follows the formula as,

arg min
Uλ

∑︂
θ∈[0,π]

∥h{pTT(θ; Uλ)} − h{pMie(θ; λ)}∥2
2, (11)

with
h(·) = A(θ)log10(·), (12)

where h(·) is an scaling operator of the SPFs to increase the weighting of the backscattering
angles in the optimization. A(θ) is a weighting function expressed as,

A(θ) =
⎧⎪⎪⎨⎪⎪⎩

1, θ ∈
[︁
0, π

2
)︁

2(Amax−1)
π

(︁
θ − π

2
)︁
+ 1 θ ∈

[︁
π
2 , π

]︁ , (13)

where Amax is the value at θ = π. By performing the fitting at each wavelength, we could
construct a set of TT functions with the obtained wavelength-dependent parameters. Afterward,
we simply reuse the five parameters in the TT function to the TT-B function, which enables the
IS-based acceleration for F-BDR simulation.
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Fig. 1. Procedures of the proposed IS-based acceleration algorithm. (a) Step I: fit the TT
function with unknown parameters and a determined Mie function at the wavelength of λ; (b)
Step II: incorporate TT and TT-B functions into the biased sampling of the scattering event.
The photon will be biased towards the detector; (c) A brief workflow of MC simulation with
IS; (d) The algorithm of the scattering with IS.

3.2. Importance sampling based on the TT function

To accelerate the MC simulation of F-BDR, we apply an IS method that biases the photons
towards the detector in scattering events as shown in Fig. 1(c). This method incorporates the
wavelength-dependent TT functions and TT-B functions as shown in Fig. 1(b) and Fig. 2. The
flow chart for determining the scattering angle using the IS method is presented in Fig. 1(d).
During the photon movement, the moving direction is defined as u = (ux, uy, uz), while the
direction of the detector is v = (vx, vy, vz), and the new moving direction after scattering is
u’ = (u′

x, u′
y, u′

z). For the simulation at each wavelength λ, supposing all the photons are shot
vertically from the detector into the tissue, that is uz = 1. The main parts of IS are listed below:

A. First scattering event bias. When the current photon has not experienced the biased scattering
and is moving away from the detector, which means uz>0, it will experience the first biased
scattering (First-bias), as shown in Fig. 2(a). For the biased angle θB = arccos(u’ · v)
sampled from pTT-B and the corresponding “true” scattering angle θS = arccos(u · u’), the
likelihood ratio is calculated as,

L(θB; λ) =
pTT(θS; Uλ)

pTT-B(θB; Uλ)
(14)

B. Split.We use a photon splitting mechanism similar to that in [25]. When a photon has been
first biased scattered to u’, another unbiased photon will be generated at the original
position with a large likelihood ratio L′ = 1 − L(θB; λ), and then be scattered by the angle
θ sampled from pTT(θ; Uλ), as shown in Fig. 2(b). We repeatedly sample this scattering
angle until it is less than 90 degrees to avoid the unbiased photon being directly scattered
back to the detector.
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C. Additional scattering bias. When the current photon is moving away from the detector (uz>0)
after the first biased scattering, it will experience an additional biased scattering (Add-bias),
as shown in Fig. 2(c). Thus the likelihood ratio is calculated as,

L(θB; λ) =
pTT(θS; Uλ)

apTT-B(θB; Uλ) + (1 − a)pTT(θS; Uλ)
(15)

where a is the probability to control whether the biased scattering happens.

Fig. 2. Exemplary illustration of IS. (a) First-bias event when uz>0; (b) Split the photon
after the first-bias event; (c) When uz>0, apply the add-bias after the first-bias.

After the scattering with IS, all likelihood ratios are multiplied to Lall. The weight W of the
current photon will be modified to W ′ = LallW before it is collected.

4. Method

To validate the efficacy of our proposed IS-accelerated simulation algorithm, we apply it to
the simulation of FD-OCT. Specifically, we employ the proposed method to speed up the
full-spectrum simulation for FD-OCT, following the strategy proposed in [21].

4.1. Simulation configuration

In this study, four methods for simulating FD-OCT are compared: (1) original full-spectrum
simulation with Mie functions [21] (referred as “Mie”); (2) simulation based on the conventional
HG function and the corresponding IS method [25,38] (referred as “HG-IS”); (3) simulation with
full-spectrum TT functions without IS (referred as “TT”); (4) our proposed method, denoted as
“TT-IS”. Similar to the setting in [21], we also use water solution of polystyrene microspheres
with the background refractive index (RI) nm = 1.33 and particle RI ns = 1.58 to form the
simulated phantoms. The common configurations on phantom models, photon propagation, and
optical parameters are summarized in Table 1.

The scattering coefficients for each phantom are determined by Mie theory with particle size,
density, RI, and wavelength as variables [13]. The probability of the additional scattering bias is
set to 0.5 for methods with IS [25]. As the HG-IS method does not incorporate the wavelength
dependency, the scattering coefficient is set corresponding to the commonly used wavelength of
1310 nm. Additionally, the anisotropy factor g for HG-IS is set to 0.9 [39]. To quantitatively
evaluate the performance of the following studies, we use the relative mean square error (rMSE)
[40] ê to measure the relative energy loss. Mathematically, the rMSE ê for the 2-D data is defined
as,

ê =

N−1∑︁
i=0

M−1∑︁
j=0

|f (i, j) − fGT(i, j)|2

N−1∑︁
i=0

M−1∑︁
j=0

|fGT(i, j)|2
× 100%, (16)
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Table 1. Common configuration details of simulations. N/A means “not available” or “not
applicable”.

Configuration Type {Mie, TT, TT-IS} HG-IS

Phantom model
Phantom1 (P1) 2-µm radius particle solution (0.34%)

Phantom2 (P2) 3-µm radius particle solution (2.83%)

Photon propagation

Emitting spectrum [1250 nm, 1350 nm]

Spectral sampling 1024 sampling points

Beam type infinite thin pencil beam

Initial cosine direction u = (0, 0, 1)

Detection filter 15-µm radius; +/- 5◦ angle

Add-bias probability a 0.5 (N/A for Mie and TT)

Optical parameters
Scattering coefficient µs(λ)

P1: [4.1 mm−1, 4.4 mm−1] 4.3 mm−1

P2: [12.1 mm−1, 12.8 mm−1] 12.5 mm−1

Anisotropy factor g N/A 0.9

Absorption coefficient µa 0 for polystyrene microspheres

where f (·) is the result that needs to be evaluated in the current study, while fGT(·) is the data that
is considered as the ground truth. N and M are the two dimensions of the data.

The whole program is run on a high-performance computing cluster equipped with Intel Xeon
Gold 6258R Processor (2.7 GHz, 56 cores).

4.2. Fitting accuracy between the TT function and Mie function

We first investigate the ability of the five-parameter TT function to accurately capture the
wavelength dependency in the Mie function. When employing NSLM to fit the TT function of
unknown parameters and Mie function with Eq. (11), we constrain the values of each parameter
in the TT function within the ranges specified in Eq. (1), and Amax = 5 in Eq. (13). To avoid
constantly increasing the value of α· in the fitting algorithm, we set the range of αf and αb to
−1/2<α· ≤ αmax,αmax = 10. The initial values of Uλ at each λ are set to {0.5, 0.5, 1, 1, 0.99}.

The accuracy of the fitting is evaluated by Eq. (16), where f (·) is the TT function map with fitted
parameters swept along λ and θ, and fGT(·) is the corresponding Mie function map. The number
of sampling points of the scattering angle and wavelength is set to N = 3601 and M = 1024,
respectively.

4.3. Validation: phantom simulation

To further validate our IS-accelerated method, we conduct some phantom-based simulations.
The overview of A-line and B-scan simulations of four methods is shown in Table 2. The fitted
reflectance map R(l, λ) defined in [21] will be utilized as the representation of F-BDR, which
is swept over the wavelength λ and optical path length (OPL) l. For methods without IS, the
F-BDR map is computed as,

R(l, λ) =
∫ l+∆l

l
Wλ(l∗)dl∗, (17)

where ∆l is the grid interval [21], and Wλ(l∗) is the whole energy of collected photons at OPL l∗
for wavelength λ. For TT-IS method, the F-BDR map will be modified as,

RIS(l, λ) =
∫ l+∆l

l
Lλ(l∗)Wλ(l∗)dl∗, (18)

where Lλ(l∗) is the summarized likelihood ratio, which is obtained by summing Lall of all
individual photon packets collected at OPL of l∗ for wavelength λ. Moreover, we consider the
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results obtained from the Mie method [21] as the ground truth against which we compared the
results.

Table 2. Summary of phantom simulations of FD-OCT. “A-mode” means the A-line simulation in
FD-OCT, while “B-mode” is the simulation of B-scan; N/A indicates that this method is not suitable

for this simulation or the computational cost of the simulation is too high.

Simulation Type Mie TT TT-IS HG-IS

A-mode F-BDR ✓ ✓ ✓ N/A

B-mode
F-BDR N/A N/A ✓ N/A

Image N/A N/A ✓ ✓

4.3.1. A-mode phantom simulation

We conduct A-mode simulations on two types of phantoms: two semi-infinite phantoms
(Phantom1 and Phantom2) and the multi-layer phantom, which is a stack of two phantoms of
different thicknesses. As the HG-IS method does not incorporate the wavelength dependency,
this method was not implemented.

For Mie and TT methods, we launch 20 million photon packets per wavelength for both
simulation on the semi-infinite phantoms and the multi-layer one, which adds up to 20.48 billion
for each simulation of F-BDR. Since the detection efficiency will be significantly increased by the
importance sampling, we only use 5 thousand photon packets per wavelength for our proposed
method (TT-IS) to simulate the semi-infinite phantoms and 10 thousand per wavelength for the
multi-layer phantom. The quantitative results are measured by Eq. (16), in which f (·) is the
F-BDR map, N = 1024 and M = 1024.

4.3.2. B-mode phantom simulation

We simulate 512 A-lines spanning a transverse range of [-1 mm, 1 mm] to generate a B-scan.
Due to the excessive computational cost of collecting enough backscattered photons in methods
without IS (Mie and TT), we had to abandon simulations using these two methods. Therefore, we
focused on simulating the F-BDR and phantom images using the TT-IS method, while providing
the image simulation with the HG-IS method as a comparison. For each A-line, 5 thousand
photon packets per wavelength will be launched for both methods.

4.3.3. Volumetric phantom simulation

To further demonstrate the scalability of our proposed method, a volume of 128 frames (B-scans)
is simulated with TT-IS method. For each B-scan, we simulate 512 A-lines within [-1 mm, 1
mm] and for each A-line, 2.5 thousand photon packets per wavelength will be launched.

5. Results

5.1. Fitting accuracy between the TT function and Mie function

Figure 3 presents the qualitative results of the fitting for two phantoms. To obtain a better view,
the Mie and TT functions for each wavelength were normalized by the minimum value of all
angles and then subjected to a logarithmic operation (see Fig. 3(a) and (b)). We also extract
profiles at different wavelengths for both SPFs for a closer examination of the fitting accuracy,
which are shown in polar coordinates in Fig. 3(c) and (d). The results demonstrate that by
adjusting the parameters of the TT function, the trend of the Mie SPF at each wavelength can be
well-fitted. However, the frequent fluctuations of the Mie function cannot be well fitted, since the
TT function is a smooth analytic function in a closed form. For the fitting on Phantom1, as shown
in Fig. 3(a), the fitted rMSE was 2.4%, whereas for Phantom2 (see Fig. 3(b)), the rMSE was
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5.4%, slightly larger than the value for Phantom1. This may be attributed to more fluctuations in
the Mie SPF due to the increase in particle radius.

Fig. 3. Results of the fitting of TT functions and Mie functions. (a) and (b) shows the Mie
function map and the fitted results of TT from Phantom1 and Phantom2, respectively. For
better comparison, profiles at four wavelengths are extracted in (c) and (d) for two phantoms.
It is evident that TT function fits the trend of the Mie function well in wavelength and angle
scanning. I - IV: 1270 nm, 1290 nm, 1310 nm, 1330 nm.

5.2. Validation: phantom simulation

5.2.1. A-mode phantom simulation

The normalized F-BDR maps of the semi-infinite Phantom1 and Phantom2 are shown in Fig. 4
and Fig. 5, respectively. Simulation results of the multi-layer phantom are presented on a
logarithmic scale in Fig. 6. The extracted wavelength-resolved reflectance (top panels), as well
as the depth-resolved profiles (right panels), facilitates a clear comparison of the results obtained
using the Mie, TT, and TT-IS methods (corresponding to (b), (c), (d) of each figure).

Qualitatively, the different wavelength dependency exhibited by the two phantoms is well
preserved in both the TT method and the proposed TT-IS method, which is very close to the
ground truth from the wavelength direction. Moreover, a comparison of the TT-IS method
(Fig. 6(d)) with the Mie method (Fig. 6(b)) reveals that the structure of the multiple layers and
the positions of boundaries are correctly visible. However, the TT and TT-IS methods seem to
slightly overestimate the BDR intensity in the deep region.

Table 3 presents the calculation time and rMSE of the three simulations. Quantitatively,
although the TT-IS method tends to overestimate the strength of F-BDR in the deep region, its
energy error relative to the Mie method is less than 5% in all three simulations, especially less
than 2% on the multi-layer phantom that launches more photons. Remarkably, the TT-IS method
achieves a speedup of 573× for Phantom1, 194× for Phantom2, and 373× for the multilayer
phantom, compared to the Mie method.
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Fig. 4. Simulation results of an A-line of Phantom1. (a) The implementation of the infinite
Phantom1; (b), (c) and (d) are the normalized F-BDR maps of Mie, TT and TT-IS methods,
respectively. The profiles at OPL of 250 µm (black) and 500 µm (red) are extracted to
show the wavelength-dependent variation (top panels), while the OPL-resolved reflectance
at wavelengths of 1270 nm (blue), 1310 nm (black) and 1330 nm (red) are also extracted for
a closer look on the attenuation (right panels).
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Fig. 5. Simulation results of an A-line of Phantom2. (a) The implementation of the infinite
Phantom2; (b), (c) and (d) are the normalized F-BDR maps of Mie, TT and TT-IS methods,
respectively. Wavelength-resolved and OPL-resolved profiles are extracted in the same
setting of Fig. 4.
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Fig. 6. Simulation results of an A-line of the multi-layer phantom. (a) The implementation
of the multi-layer phantom; (b), (c) and (d) are the normalized F-BDR maps of Mie, TT and
TT-IS methods shown on the logarithmic scale, respectively. Different from the Fig. 4 and
Fig. 5, the profiles at OPL of 500 µm (red) and 1000 µm (black) are extracted to highlight
the distinct variation of two types of layers along the wavelength (top panels). The results
obtained by TT-IS (d) are consistent with the F-BDR variation and the structural features of
different layers obtained through the Mie method (a).

Table 3. Quantitative results of the A-line simulations. The TT-IS method achieves a remarkable
acceleration of over two orders of magnitude compared to the ground truth Mie method, with the

required time highlighted in bold.

Methods Mie TT TT-IS

Fig. 4 (Phantom1)
Time (core hour) 286.3 259.3 0.5

rMSE ê (%)
Mie ⋆ 0.67 1.61

TT 0.67 ⋆ 1.52

Fig. 5 (Phantom2)
Time (core hour) 774.7 621.8 4.0

rMSE ê (%)
Mie ⋆ 0.40 2.08

TT 0.40 ⋆ 1.13

Fig. 6 (Multi-layer phantom)
Time (core hour) 335.7 304.4 0.9

rMSE ê (%)
Mie ⋆ 0.35 1.46

TT 0.35 ⋆ 0.78

5.2.2. B-mode phantom simulation

Thanks to the improved simulation speed, the calculation of a B-scan consisting of 512 A-lines
can now be completed in a vastly improved time. The F-BDR simulation of this B-scan is shown
in Fig. 7. We simulate 512 A-lines in parallel, each taking an average of only 0.4 hours. The total
simulation time adds up to 204.8 CPU core hours. Figure 7(b) displays the F-BDR of a phantom
with the structure depicted in Fig. 7(a), which is formed as a three-dimensional data cube along
the wavelength, OPL, and transverse positions. It demonstrates the ability to resolve different
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layers and spherical structures, with clear variations of BDR observed along the OPL direction.
To better demonstrate the preserved wavelength dependency, a threshold was applied to the data
cube to only retain the upper surface portion of the spherical structure, as indicated by the red
dashed box in Fig. 7(b), as presented in Fig. 7(c). The varying distribution of intensity depicted
in Fig. 7(c) showcases the wavelength dependency and the trend observed is similar to profiles
presented in the top panel of Fig. 5(d).

Fig. 7. F-BDR simulation results of a 2-D structured phantom. (a) The structure of the
simulated phantom. 512 A-lines are calculated within a transverse range of [-1 mm, 1 mm];
(b) Simulated F-BDR of the B-scan, which is formed as a 3-D data cube swept along the
wavelength, OPL, and transverse position; (c) F-BDR of the upper surface of the spherical
structure after the thresholding. The wavelength dependency of the F-BDR can be clearly
visible.

Using the obtained F-BDR, we further reconstruct the B-mode image I(x, z) of FD-OCT, as
shown in Fig. 8(b), where x represents the transverse position and z represents the axial depth,
which is half of the OPL. Additionally, the image obtained with the HG-IS method, which is
similar to [38], is presented in Fig. 8(a). It is evident that, compared to the method based on
the HG function and its corresponding IS, the proposed method better displays the structural
characteristics of the phantom and produces more realistic speckle patterns.

Fig. 8. Reconstructed B-scan image of the phantom implemented in Fig. 7(a). (a) Image
obtained from the HG-IS method; (b) Image reconstructed with the F-BDR cube obtained
from the proposed TT-IS method, which is displayed in Fig. 7(b).

5.2.3. Volumetric phantom simulation

A complex 3-D phantom is built as shown in Fig. 9(a). The layered structure is implemented
using Phantom1, while a branched structure is constructed with Phantom2. The empty space is
the background medium (water). Figure 9(b) shows the simulated volume of the phantom. The
overall simulation time is 5898 CPU core hours. Our method has simulated a realistic volume,
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and some phenomena, such as shadows below the strongly scattered medium (Phantom2) can be
observed. It should be noted that the full-spectrum volume simulation is almost impossible with
the original simulator without IS-based acceleration.

Model

Phantom2

Phantom1

(a) (b)
100 m 100 m

Simulatedframes frames

Fig. 9. (a) 3D Phantom implementation containing 128 frames; (b) Simulated FD-OCT
volume of the phantom.

6. Discussion

6.1. Error propagation of the algorithm

The proposed IS-accelerated simulation method is divided into two steps. The first step is to fit
Mie functions and TT functions with unknown parameters, and the second step is to apply the
derived TT-B function to perform biased sampling in the scattering process. Each step brings
errors.

The first step of the proposed method can introduce errors mainly due to two factors: (1) the
inaccuracy of the fitting procedure, and (2) the loss of a large number of fluctuations in the Mie
function. Both could lead to a slight overestimation in the fitting values of the backscattering part
in TT SPF, which results in the misestimation of BDR intensity in the deep region. The former
can be mitigated by adjusting the weighting method specified by h(·) in Eq. (11) or by using a
more robust fitting method than NLSM, such as genetic algorithms [41]. For the latter, due to the
smoothness of the TT function, the fitting loss of fluctuation in the Mie function seems inevitable,
and the specific effects of the lack of these fluctuations on scattering need to be further studied.

In the second step, the errors introduced by the TT method are further amplified by the TT-IS
method. For example, by comparing (b) and (c) as well as (b) and (d) in Fig. 4 and Fig. 5, it can be
observed that when the TT method results in certain F-BDR peak shift and energy overestimation,
TT-IS will further exacerbate these phenomena, thereby introducing more errors. This is due to
the improved sampling efficiency of TT-IS, as well as the fact that the five parameters of TT are
simply copied into TT-IS. Adjusting the parameters in TT-IS may help to reduce these errors, but
in cases where little energy loss occurs, such adjustments may be unnecessary.

6.2. Difference in the B-scan image between HG-IS and TT-IS method

The B-scan images presented in Fig. 8 exhibit a significant difference. Our proposed method
produces clear structures of the phantom, while the HG-based method fails to do so. It is
because of the misestimation of the backscattering component in the HG function, as well as the
fact that the HG function does not account for wavelength dependency and employs the same
anisotropy factors across different phantoms. Although the scattering coefficients of the two
types of phantoms utilized in the HG-based method differ, it appears that SPF plays a more
significant role in the scattering process, resulting in an unclear central spherical structure in the
HG-based image (see Fig. 8(a)).
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6.3. Generalization in BDR-based applications

Although our proposed method has only been validated for use in FD-OCT, it can be easily
adapted to other BDR-dependent applications. The proposed TT-B function for controlling biased
scattering is based on the TT function, which exhibits excellent generalization properties and can
be applied in other areas without imposing additional conditions. The proposed biased scattering
process is adapted from a previous study [25] that directs photons towards the detector, resulting
in a biased distribution. However, we believe that for different applications, the biasing process
can be modified to direct photons towards specific regions of interest. In such cases, the TT and
TT-B functions can still be used for unbiasing and biasing scattering sampling, respectively.

6.4. Further speedup with CUDA parallel computing

Although the simulation combined with IS acceleration is faster than the original simulator
[21], it still takes hundreds to thousands of core hours to produce a well-simulated image or
volume. Considering the potential applications of the MC simulation, such as inverse estimation
of optical parameters [42,43], requires lower computational cost, we need to further improve the
simulation speed. Using Compute Unified Device Architecture (CUDA) for parallel computing
can accelerate the MC simulation hundreds of times while ensuring accuracy [26]. In the future,
we will migrate the proposed algorithm to the CUDA platform for further acceleration.

6.5. Application on biological tissues

While the proposed method exhibits promising performance in simulating particle-based phantoms,
validating it with real biological tissues poses potential challenges. One challenge is that biological
tissues are based on complex refractive index fluctuations rather than distributions of spherical
particles. In such cases, the smooth TT SPF may offer a more effective simulation of the
scattering properties of biological tissues compared to the Mie SPF. Exploring methods to
establish connections between particle-based models and complex refractive index fluctuations
would be one of our future research topics. Secondly, it is difficult to do the parameter fitting of
the TT SPF with the Mie SPF due to the unknown particle distribution. In this case, it may be
necessary to experimentally measure the TT SPF.

6.6. Progressive acceleration of the algorithm

From Table 3, it is apparent that both TT and TT-IS methods achieve the acceleration of the
computational time compared to the Mie method. Since the TT SPF is smoother than Mie SPF, it
is easier to inversely sample the scattering angle using the TT function, which makes the TT
method a little faster than the Mie method. However, this acceleration is also limited by the
collection efficiency of backscattered photons. Only by adding IS to the TT method can we
improve the collection efficiency and greatly reduce the computational cost.

7. Conclusion

To tackle the problem of the excessive computational cost of MC simulation for F-BDR, we
propose a novel IS-based acceleration scheme utilizing the TT function, which can accurately
approximate the Mie SPF. We derive a TT-based general biased SPF, TT-B function, tailored
for the case of biasing photons towards the region of interest (detector). By fitting the TT
function and Mie function, we obtain wavelength-dependent parameters for both the TT and
TT-B functions. These functions are then integrated into the IS process to bias photons towards
the detector, resulting in an efficient and accurate simulation of backscattered events at each
wavelength. The application on the full-spectrum simulator of FD-OCT fully demonstrates the
effectiveness of the proposed IS-accelerated F-BDR simulation method: compared with the
original simulator, the F-BDR of a multi-layer phantom can be produced in 373× speed with
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the rMSE less than only 2%. Moreover, this method can also be extended to the simulation
to cross-sections and volumes, which makes it a powerful tool for studying numerous forward
modeling and inverse problems in various applications that require F-BDR simulation.
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